quarta-feira, 29 de setembro de 2010

A 5ª série e o M.M.C.

Neste semestre estou realiazando os dois estágios práticos, o médio estou realizando com o 1º ano do ensino médio, já no estágio do fundamental escolhi a 5ª série, e essa está me deixando preocupada. Percebi que eles apresentam uma grande dificuldade em compreender o mínimo múltiplo comum. Então encontrei este texto que serve para mostrar um jeito diferente daquele que consideramos o "modo prático". O endereço do site que retirei o texto segue logo abaixo.

Como encontrar o denominador comum?

Antonio Rodrigues Neto*
Especial para a Página 3 Pedagogia & Comunicação
Página 3
Comer um quarto (1/4) de uma pizza é o mesmo que comer dois oitavos (2/8)?
O que é um denominador comum? Em perguntas simples como essa podemos aprender matemática, principalmente no que se refere aos conceitos fundamentais dessa disciplina.

Para entendermos o denominador comum não podemos ter dúvida de que a fração é uma relação simultânea entre o denominador e o numerador.

O denominador é o termo da fração que indica o número de partes em que será dividida uma determinada quantidade, enquanto que o numerador é o número de partes que usaremos dessa quantidade que acabou de ser dividida.

Assim, a fração é um número construído a partir da razão do numerador pelo denominador.

É a partir dessa razão entre numerador e denominador que podemos perceber que as frações aparentemente diferentes possibilitam o mesmo resultado. Isto porque a razão de um por quatro é o mesmo que a razão de dois por oito.

Comer um quarto (1/4) de uma pizza é o mesmo que comer dois oitavos (2/8); em outras palavras, dividir uma pizza em oito e pegar dois pedaços é equivalente a dividir em quatro e pegar um. É a partir desse princípio que podemos compreender a construção de um denominador comum.

Solucionando problemas

O denominador comum aparece a partir da necessidade de somarmos ou subtrairmos frações em determinados problemas de cálculo em que são usadas frações com denominadores diferentes. Carlos recebe o salário de R$ 3.600,00 e gasta um quarto (1/4) com aluguel e dois terços (2/3) com alimentação. Considerando somente esses dois itens, quanto sobrará do salário de Carlos para outros gastos?

O problema pode ser resolvido calculando 1/4 de 3.600,00 reais, que é igual a 900,00 reais, e 2/3 de 3.600,00, que é igual a 2.400,00, dando um total de 3.300,00 reais. Carlos não terá uma sobra que dê folga para outros gastos.

No entanto, o problema pode ser resolvido de uma outra forma, que não ajudará na situação de Carlos, mas poderá facilitar o cálculo. Em vez de calcularmos separadamente a fração do aluguel e da alimentação, para depois somar, podemos somar essas duas frações e, com o resultado dessa soma, calcular o gasto total:

1/4 de 3.600,00 + 2/3 de 3.600,00 = (1/4 + 2/3) de 3.600,00

Denominadores diferentes

Como somar frações com denominadores diferentes? Bom, primeiro, explorando a adição em uma situação em que os denominadores são iguais. Para isso, o exemplo da pizza mais uma vez é oportuno.

Em uma mesa com três pessoas é distribuída, em uma rodada, um pedaço de pizza para cada uma. Se a pizza for dividida em oito pedaços, como é de costume, é obvio que a quantidade distribuída será de 3/8 da pizza, podendo ser escrito como 1/8 +1/8 +1/8, referente ao que cada um recebeu.

No entanto, o problema pode mudar se um dos três resolver somar ao seu prato a metade de um pedaço. Qual a fração total que ele estaria consumindo?

Se o pedaço não fosse cortado pela metade, a resposta seria 2/8, no entanto, como a metade de um oitavo é um dezesseis avos, teremos a soma de 1/8 (o pedaço que já está no prato) com 1/16.

A estratégia para a resolução é imaginarmos essa pizza, inicialmente, sendo dividida em 16 partes, em vez de oito. Assim, 1/8 da pizza pode ser interpretado como 2/16, permitindo a soma de 2/16 + 1/16, dando a resposta de que no prato há 3 pedaços de uma pizza que foi dividida em 16 partes, isto é 3/16.

Encontrando o denominador comum

A transformação de 1/8 em 2/16 fez com que os denominadores ficassem comuns, possibilitando a soma. Na verdade, achar o denominador comum das frações é achar as frações equivalentes dessas frações com o mesmo denominador para, dessa forma, possibilitar a soma ou subtração com esse tipo de número.

No caso dos gastos de Carlos, temos que descobrir as frações equivalentes respectivas a 1/4 e a 2/3, com a condição de terem o mesmo denominador. Como?

Vou optar em dividir ou multiplicar o numerador e o denominador por um mesmo número. Vimos que a fração 2/8 é equivalente a 1/4 e que ela pode ser calculada multiplicando tanto o numerador como o denominador por 2.

Dessa forma, se aplicarmos o mesmo procedimento, mas multiplicando por 3, obteremos 3/12, que pode substituir 1/4. Para o caso de 2/3 obtemos 4/6, 6/9 e, por fim, 8/12, que possui o mesmo denominador de 3/12 (equivalente de 1/4).

Finalmente, fazemos a soma substituindo as frações com denominadores diferentes pelas respectivas frações equivalentes com denominador 12:

(1/4 + 2/3) de 3.600,00 = (3/12 + 8/12) de 3.600,00 = 11/12 de 3.600,00

Assim, 11/12 de 3.600,00 é repartir 3.600,00 em 12 partes, utilizando 11, que é igual a 3.300,00, dando o mesmo valor quando aplicamos as frações, sem nos preocuparmos com o denominador comum. Se, em vez de somar, fosse necessário subtrair frações com denominadores diferentes, o método seria o mesmo.
*Antonio Rodrigues Neto, professor de matemática no ensino fundamental e superior, é mestre em educação pela USP e autor do livro "Geometria e Estética: experiências com o jogo de xadrez" pela Editora da UNESP.
http://educacao.uol.com.br/matematica/denominador-comum.jhtm

quarta-feira, 22 de setembro de 2010

A utilização de materiais concretos e jogos no Ensino da Matemática

 Atualmente fala-se muito em utilizar materiais concretos e jogos para ensinar matemática. Mas como o professor deve agir frente a esses novos métodos de ensinar. O texto abaixo propõe uma reflexão sobre esses assuntos.

Uma reflexão sobre o uso de materiais concretos e jogos no Ensino da Matemática


Dario Fiorentini e
Maria Ângela Miorim
Docentes da Faculdade de Educação da UNICAMP
Publicado no Boletim SBEM-SP
Ano 4 - nº 7
As dificuldades encontradas por alunos e professores no processo ensino-aprendizagem da matemática são muitas e conhecidas. Por um lado, o aluno não consegue entender a matemática que a escola lhe ensina, muitas vezes é reprovado nesta disciplina, ou então, mesmo que aprovado, sente dificuldades em utilizar o conhecimento "adquirido", em síntese, não consegue efetivamente ter acesso a esse saber de fundamental importÂncia.
O professor, por outro lado, consciente de que não consegue alcançar resultados satisfatórios junto a seus alunos e tendo dificuldades de, por si só, repensar satisfatoriamente seu fazer pedagógico procura novos elementos - muitas vezes, meras receitas de como ensinar determinados conteúdos - que, acredita, possam melhorar este quadro. Uma evidência disso é, positivamente, a participação cada vez mais crescente de professores nos encontros, conferências ou cursos.
São nestes eventos que percebemos o grande interesse dos professores pelos materiais didáticos e pelos jogos. As atividades programadas que discutem questões relativas a esse tema são as mais procuradas. As salas ficam repletas e os professores ficam maravilhados diante de um novo material ou de um jogo desconhecido. Parecem encontrar nos materiais a solução - a fórmula mágica- para os problemas que enfrentam no dia-a-dia da sala de aula.
O professor nem sempre tem clareza das razões fundamentais pelas quais os materiais ou jogos são importantes para o ensino-aprendizagem da matemática e, normalmente são necessários, e em que momento devem ser usados.
Geralmente costuma-se justificar a importância desses elementos apenas pelo caráter "motivador" ou pelo fato de se ter "ouvido falar" que o ensino da matemática tem de partir do concreto ou, ainda, porque através deles as aulas ficam mais alegres e os alunos passam a gostar da matemática.
Entretanto, será que podemos afirmar que o material concreto ou jogos pedagógicos são realmente indispensáveis para que ocorra uma efetiva aprendizagem da matemática?
Pode parecer, a primeira vista, que todos concordem e respondam sim a pergunta. Mas isto não é verdade. Um exemplo de uma posição divergente é colocada por Carraher & Schilemann (1988), ao afirmarem, com base em suas pesquisas, que "não precisamos de objetos na sala de aula, mas de objetivos na sala de aula, mas de situações em que a resolução de um problema implique a utilização dos princípios lógico-matemáticos a serem ensinados" (p. 179). Isto porque o material "apesar de ser formado por objetivos, pode ser considerado como um conjunto de objetos 'abstratos' porque esses objetos existem apenas na escola, para a finalidade de ensino, e não tem qualquer conexão com o mundo da criança" (p. 180). Ou seja, para estes pesquisadores, o concreto para a criança não significa necessariamente os materiais manipulativos, mas as situações que a criança tem que enfrentar socialmente.
As colocações de Carraher & Schilemann nos servem de alerta: não podemos responder sim aquelas questões sem antes fazer uma reflexão mais profunda sobre o assunto.
Com efeito, sabemos que existem diferentes propostas de trabalho que possuem materiais com características muito próprias, e que os utilizam também de forma distinta e em momentos diferentes no processo ensino-aprendizagem.
Qual seria a razão para a existência desta diversidade?
Na verdade, por trás de cada material, se esconde uma visão de educação, de matemática, do homem e de mundo; ou seja, existe, subjacente ao material, uma proposta pedagógica que o justifica.
O avanço das discussões sobre o papel e a natureza da educação e o desenvolvimento da psicologia, ocorrida no seio das transformações sociais e políticas contribuíram historicamente para as teorias pedagógicas que justificam o uso na sala de aula de materiais "concretos" ou jogos fossem, ao longo dos anos, sofrendo modificações e tomando feições diversas.
Até o séc. XVI, por exemplo, acreditava-se que a capacidade de assimilação da criança era idêntica ã do adulto, apenas menos desenvolvida. A criança era considerada um adulto em miniatura. Por esta razão, o ensino deveria acontecer de forma a corrigir as deficiências ou defeitos da criança. Isto era feito através da transmissão do conhecimento. A aprendizagem do aluno era considerada passiva, consistindo basicamente em memorização de regras, formulas, procedimentos ou verdades localmente organizadas. Para o professor desta escola - cujo o papel era o de transmissor e expositor de um conteúdo pronto e acabado - o uso de materiais ou objetos era considerado pura perda de tempo, uma atividade que perturbava o silêncio ou a disciplina da classe. Os poucos que os aceitavam e utilizavam o faziam de maneira puramente demonstrativa, servindo apenas de auxiliar a exposição, a visualização e memorização do aluno. Exemplos disso são: o flanelógrafo, as réplicas grandes em madeira de figuras geométricas, desenhos ou cartazes fixados nas paredes... Em síntese, estas constituem as bases do chamado "Ensino Tradicional" que existe até hoje em muitas de nossas escolas.
Já no séc. XVII, este tipo de ensino era questionado. Comenius (1592-1671) considerado o pai da Didática, dizia em sua obra "Didática Magna" (1657) que "...ao invés de livros mortos, por que não podemos abrir o livro vivo da natureza? Devemos apresentar a juventude as próprias coisas, ao invés das suas sombras" (Ponce, p.127).
No séc. XVIII, Rousseau (1727 - 1778), ao considerar a Educação como um processo natural do desenvolvimento da criança, ao valorizar o jogo, o trabalho manual, a experiência direta das coisas, seria o percursor de uma nova concepção de escola. Uma escola que passa a valorizar os aspectos biológicos e psicológicos do aluno em desenvolvimento: o sentimento, o interesse, a espontaneidade, a criatividade e o processo de aprendizagem, as vezes priorizando estes aspectos em detrimento da aprendizagem dos conteúdos.
Ë no bojo dessa nova concepção de educação e de homem que surgem, primeiramente, as propostas de Pestalozzi (1746 - 1827) e de seu seguidor Froebel (1782 - 1852). Estes foram os pioneiros na configuração da "escola ativa". Pestalozzi acreditava que uma educação seria verdadeiramente educativa se proviesse da atividade dos jovens. Fundou um internato onde o currículo adotado dava ênfase à atividades dos alunos como canto, desenho, modelagem, jogos, excursões ao ar livre, manipulação de objetos onde as descrições deveriam preceder as definições; o conceito nascendo da experiência direta e das operações sobre as coisas [ 4, pp. 17 - 18].
Posteriormente, Montessori (1870 - 1952) e Decroly (1871 - 1932), inspirados em Pestalozzi iriam desenvolver uma didática especial (ativa) para a matemática.
A médica e educadora italiana, Maria Montessori, após experiências com crianças excepcionais, desenvolveria, no início deste século, vários materiais manipulativos destinados a aprendizagem da matemática. Estes materiais, com forte apelo a "percepção visual e tátil", foram posteriormente estendidos para o ensino de classes normais. Acreditava não haver aprendizado sem ação: "Nada deve ser dado a criança, no campo da matemática, sem primeiro apresentar-se a ela uma situação concreta que a leve a agir, a pensar, a experimentar, a descobrir, e daí, a mergulhar na abstração" (Azevedo, p. 27)
Entre seus materiais mais conhecidos destacamos: "material dourado", os "triÂngulos construtores" e os "cubos para composição e decomposição de binômios, trinômios".
Decroly, no entanto, não põe nada na mão da criança materiais para que ela construa mas sugere como ponto de partida fenômenos naturais (como o crescimento de uma planta ou a quantidade de chuva recolhida num determinado tempo, para por exemplo, introduzir medições e contagem). Ou seja, parte da observação global do fenômeno para, por análise, decompô-lo.
Castelnuovo (1970) denomina o método Decroly de "ativo - analítico" enquanto que o de Montessori de "ativo - sintético" (sintético porque construtivo). Em ambos os métodos falta, segundo Castelnuovo, uma "certa coisa" que conduz a criança à indução própria do matemático. é com base na teoria piageteana que aponta para outra direção: A idéia fundamental da ação é que ela seja reflexiva..."que o interesse da criança não seja atraído pelo objeto material em si ou pelo ente matemático, senão pelas operações sobre o objeto e seus entes. Operações que, naturalmente, serão primeiro de caráter manipulativo para depois interiorizar-se e posteriormente passar do concreto ao abstrato. Recorrer a ação, diz Piaget, não conduz de todo a um simples empirismo, ao contrário, prepara a dedução formal ulterior, desde que tenha presente que a ação, bem conduzida, pode ser operatória, e que a formalização mais adiantada o é também" [4, pp. 23-28].
Assim interpreta Castelnuovo, o 'concreto' deve ter uma dupla finalidade : "exercitar as faculdades sintéticas e analíticas da criança" ; sintética no sentido de permitir ao aluno construir o conceito a partir do concreto; analítica por que, nesse processo, a criança deve discernir no objeto aqueles elementos que constituem a globalização. Para isso o objeto tem de ser móvel, que possa sofrer uma transformação para que a criança possa identificar a operação - que é subjacente [4, pp. 82 - 91]
Resumindo, Castelnuovo defende que "o material deverá ser artificial e também ser transformável por continuidade" (p. 92). Isto porque recorrermos aos fenômenos naturais, como sugere Decroly, nele há sempre continuidade, porém, são limitados pela própria natureza e não nos levam a extrapolar, isto é, a idealizar o fenômeno por outro lado, podem conduzir ã idéia de infinito, porem lhes faltam o caráter de continuidade e do movimento (p. 92).
Para contrapor ao que acabamos de ver, gostaríamos de dizer algumas palavras sobre outra corrente psicológica: o behaviorismo, que também apresenta sua concepção de material, e principalmente, de jogo pedagógico. Segundo Skinner (1904), a aprendizagem é uma mudança de comportamento (desenvolvimento de habilidades ou mudanças de atitudes) que decorre como resposta a estímulos esternos, controlados por meio de reforços. A matemática, nesta perspectiva, é vista, muitas vezes, como um conjunto de técnicas, regras, fórmulas e algoritmos que os alunos tem de dominar para resolver os problemas que o mundo tecnológico apresenta.
Os Métodos de ensino enfatizam, além de técnicas de ensino como instrução programada (estudo através de fichas ou módulos instrucionais) o emprego de tecnologias modernas audiovisuais (retroprojetor, filmes, slides ...) ou mesmo computadores.
Os jogos pedagógicos, nesta tendência, seriam mais valorizados que os materiais concretos. Eles podem vir no início de um novo conteúdo com a finalidade de despertar o interesse da criança ou no final com o intuito de fixar a aprendizagem e reforçar o desenvolvimento de atitudes e habilidades.
Para Irene Albuquerque (1954) o jogo didático "..,serve para fixação ou treino da aprendizagem. é uma variedade de exercício que apresenta motivação em si mesma, pelo seu objetivo lúdico... Ao fim do jogo, a criança deve ter treinado algumas noções, tendo melhorado sua aprendizagem" (p. 33)
Veja também a importÂncia dada ao jogo na 'formação educativa' do aluno "... através do jogo ele deve treinar honestidade, companheirismo, atitude de simpatia ao vencedor ou ao vencido, respeito as regras estabelecidas, disciplina consciente, acato às decisões do juiz..." (Idem, p. 34)
Esta diversidade de concepções acerca dos materiais e jogos aponta para a necessidade de ampliar nossa reflexão.
Queremos dizer que, antes de optar por um material ou um jogo, devemos refletir sobre a nossa proposta político-pedagógica; sobre o papel histórico da escola, sobre o tipo de aluno que queremos formar, sobre qual matemática acreditamos ser importante para esse aluno.
O professor não pode subjugar sua metodologia de ensino a algum tipo de material porque ele é atraente ou lúdico. Nenhum material é válido por si só. Os materiais e seu emprego sempre devem, estar em segundo plano. A simples introdução de jogos ou atividades no ensino da matemática não garante uma melhor aprendizagem desta disciplina.
Ë freqüente vermos em alguns professores uma mistificação dos jogos ou materiais concretos. Até mesmo na Revista "Nova Escola" esta mistificação, pode ser percebida como mostra o seguinte fragmento: "Antes a matemática era o terror dos alunos. Hoje ... as crianças adoram porque se divertem brincando, ao mesmo tempo que aprendem sem decoreba e sem traumas..." Mariana Manzela (8 anos) confirma isto : "é a matéria que eu mais gosto porque tem muitos jogos" [ No.39, p. 16].
Ora, que outra função tem o ensino de matemática senão o ensino da matemática? Ë para cumprir esta tarefa fundamental que lançamos mão de todos os recursos que dispomos.
Ao aluno deve ser dado o direito de aprender. Não um 'aprender' mecÂnico, repetitivo, de fazer sem saber o que faz e por que faz. Muito menos um 'aprender' que se esvazia em brincadeiras. Mas um aprender significativo do qual o aluno participe raciocinando, compreendendo, reelaborando o saber historicamente produzido e superando, assim, sua visão ingênua, fragmentada e parcial da realidade.
O material ou o jogo pode ser fundamental para que isto ocorra. Neste sentido, o material mais adequado, nem sempre, será o visualmente mais bonito e nem o já construído. Muitas vezes, durante a construção de um material o aluno tem a oportunidade de aprender matemática de forma mais efetiva.
Em outro momentos, o mais importante não será o material, mas sim, a discussão e resolução de uma situação problema ligada ao contexto do aluno, ou ainda, à discussão e utilização de um raciocínio mais abstrato.
Bibliografias
1. ALBUQUERQUE, Irene de. Metodologia da Matemática. Rio de Janeiro : Ed. Conquista, 1953
2. AZEVEDO, Edith D. M. Apresentação do trabalho Montessoriano. In: Ver. de Educação & Matemática no. 3, 1979 (pp. 26 - 27)
3. CARRAHER, T. N. Na vida dez, na escola zero. São Paulo: Cortez, 1988.
4. CASTELNUOVO, E. Didática de la Matemática Moderna. México: Ed. Trillas, 1970
5. DIENNES, Z. P. Aprendizado moderno da matemática. Rio de Janeiro: Zahar Editores, 1970
6. PONCE, Aníbal. Educação e luta de classes. São Paulo: Cortez, 1985.
7. SAVIANI, D. Escola e democracia. São Paulo: Cortez 1985.
site:
 http://www.matematicahoje.com.br/telas/educ_mat/artigos/artigos_view.asp?cod=15

quarta-feira, 15 de setembro de 2010

O ANO DE 2000 JÁ PASSOU MAS O CÁLCULO É INTERESSANTE


O texto abaixo é original, por isso refere-se ao tão esperado carnaval do ano 2000, mas o cálculo é valido para calcular a data de qualquer carnaval. Se você é festeiro, e gosta de se programar com antecedência, agora já, sabe é só resolover o cálculo abaixo.


Quando cai o Carnaval?

Já que você . . . mora num país tropical, abençoado por Deus e bonito por natureza, responda:
Que dia do mês (de que mês ?) será o tão esperado Carnaval do ano 2000?
Difícil?
Complicado?
Pois é, acredite se quiser, o grande matemático Carl Friedich Gauss, que desenvolveu a teoria das congruências, dedicou-se indiretamente a desvendar o enigma. Gauss estudou e propôs um método para determinar as datas de Páscoa, cujas regras foram definidas no Concílio de Nicéia (325 d.C.). De acordo com o que foi decidido a Páscoa deve ser celebrada no domingo seguinte à primeira lua cheia da Primavera (é claro que trata-se da Primavera na Europa). Gauss desenvolveu uma regra prática para calcular a data da Páscoa no calendário gregoriano, a partir de 1583.
Seja A o ano, m e n dois números que variam ao longo do tempo de acordo com a seguinte tabela:
    1583-1699 . m=22 n=2
    1700-1799 . m=23 n=3
    1800-1899 . m=23 n=4
    1900-2099 . m=24 n=5
    2100-2199 . m=24 n=6
Seja ainda:
    a o resto da divisão de A por 19
    b o resto da divisão de A por 4
    c o resto da divisão de A por 7
    d resto da divisão de 19a+m por 30
    e o resto da divisão de 2b+4c+6d+n por 7
Então a Páscoa será no dia 22+d+e de março ou d+e-9 de Abril
Nota:
1. O dia 26 de abril deve ser sempre substituído por 19 de abril.
2. O dia 25 de abril deve ser substituído por 18 de abril se d=28, e=6 e a>10.
Uau! Onde será que Gauss estava com a cabeça?
Você é capaz de justificar o método de Gauss?
Experimente usar uma planilha eletrônica para gerar uma tabela que dá as datas da Páscoa.
fonte:
http://www.matematicahoje.com.br/telas/cultura/curiosidades/curiosidades.asp?aux=A


quarta-feira, 8 de setembro de 2010

A MATEMÁTICA E A EDUCAÇÃO INFANTIL

Devido a minha ligação com a Educação Infantil não poderia deixar de abordar esse assunto. Afinal é na Educação Infantil que as crianças começam a descobrir o mundo e estão abertas a novidades,a descobertas das mais mais diversificas. Por isso trago o endereço do blog da Tatiana "O MUNDO DA ALFABETIZAÇÃO"
http://tatiana-alfabetizacao.blogspot.com/2008/04/as-crianças-e-aprendizagem.html 
Abaixo está o material que ela havia relacionado. No blog também há materiais sobre outras áreas muito interessantes

Matemática na Educação Infantil

Inserindo a Matemática
na Educação Infantil
Existem muitas formas de conceber e trabalhar com a matemática na Educação Infantil. A matemática está presente na arte, na música, em histórias, na forma como organizo o meu pensamento, nas brincadeiras e jogos infantis. Uma criança aprende muito de matemática, sem que o adulto precise ensiná-la. Descobrem coisas iguais e diferentes, organizam, classificam e criam conjuntos, estabelecem relações, observam os tamanhos das coisas, brincam com as formas, ocupam um espaço e assim, vivem e descobrem a matemática. Contudo, é importante pensarmos que tipo de materiais podemos disponibilizar para as crianças a fim de possibilitar-lhes tais descobertas.
Existem no mercado diversos materiais que podem ser utilizados pelos professores para enriquecer o contato com o universo matemático. São músicas, livros de histórias infantis, encartes de revistas, brinquedos e jogos pedagógicos, que podem ser facilmente encontrados e que permitem à criança o contato com os números, com as formas, com as quantidades, seqüências, etc. Além desse material, é possível que o professor crie seu próprio material de trabalho, confeccionando quebra-cabeças, seqüências lógicas, desenvolvendo atividades com ritmo, oferecendo palitos e outros materiais, propondo jogos e brincadeiras e possibilitando a criação das crianças.
Quanto ao trabalho com os números, é importante compreendermos que estes são símbolos que representam graficamente uma quantidade de coisas que poderiam ser representadas de outra forma. Assim, antes de descobrir os números, é importante ajudarmos as crianças: dizer quantos têm, mostrar nos dedinhos e brincar com tudo isso.
O importante é que o professor perceba que pode trabalhar a matemática na Educação Infantil sem se preocupar tanto com a representação dos números ou com o registro no papel, pode colocar em contato com a matemática crianças de todas as idades, desde bebês. Podemos pensar a matemática a partir de uma proposta não-escolarizante, que permita à criança criar, explorar e inventar seu próprio modo de expressão e de relação com o mundo. Tudo o que temos que fazer é criar condições para que a matemática seja descoberta, oferecer estímulo e estar atentos às descobertas das crianças.
Gabriela Guarnieri de Campos Tebet, Professora de Educação Infantil da Prefeitura Municipal de São Carlos; Pedagoga e Mestre em Educação pela UFScar.

quarta-feira, 1 de setembro de 2010

A Geometria do Futebol: um facilitador no ensino aprendizagem

Oi! Achei um artigo muito legal no site SÓ MATEMÁTICA, ele mostra como usar o futebol para ensinar a geometria. Passem por lá, vale a pena!